aoi学院

Aisaka's Blog, School of Aoi, Aisaka University

CS231n: Convolutional Neural Networks for Visual Recognition [2017] 课程笔记 Note 3

Note 3

原文:linear classification notes

翻译:线性分类笔记(上)(中)(下)

我们将要实现一种更强大的方法来解决图像分类问题,该方法可以自然地延伸到神经网络和卷积神经网络上。这种方法主要有两部分组成:一个是评分函数(score function),它是原始图像数据到类别分值的映射。另一个是损失函数(loss function),它是用来量化预测分类标签的得分与真实标签之间一致性的。该方法可转化为一个最优化问题,在最优化过程中,将通过更新评分函数的参数来最小化损失函数值。内容列表:

  • 线性分类器简介
  • 线性评分函数
  • 阐明线性分类器
  • 损失函数
    • 多类SVM
    • Softmax分类器
    • SVM和Softmax的比较
  • 基于Web的可交互线性分类器原型
  • 小结